Review article

Object based image analysis for remote sensing

T. Blaschke*
Z_GIS Centre for Geoinformatics and Department for Geography and Geology, University of Salzburg, Hellbrunner Street 34, A-5020 Salzburg, Austria

ARTICLE INFO

Article history:
Received 25 February 2009
Received in revised form
15 May 2009
Accepted 29 June 2009
Available online 28 August 2009

Keywords:
Object based image analysis
OBIA
GEOBIA
GIScience
Multiscale image analysis

ABSTRACT

Remote sensing imagery needs to be converted into tangible information which can be utilised in conjunction with other data sets, often within widely used Geographic Information Systems (GIS). As long as pixel sizes remained typically coarser than, or at the best, similar in size to the objects of interest, emphasis was placed on per-pixel analysis, or even sub-pixel analysis for this conversion, but with increasing spatial resolutions alternative paths have been followed, aimed at deriving objects that are made up of several pixels. This paper gives an overview of the development of object based methods, which aim to delineate readily usable objects from imagery while at the same time combining image processing and GIS functionalities in order to utilize spectral and contextual information in an integrative way. The most common approach used for building objects is image segmentation, which dates back to the 1970s. Around the year 2000 GIS and image processing started to grow together rapidly through object based image analysis (OBIA - or GEOBIA for geospatial object based image analysis). In contrast to typical Landsat resolutions, high resolution images support several scales within their images. Through a comprehensive literature review several thousand abstracts have been screened, and more than 820 OBIA-related articles comprising 145 journal papers, 84 book chapters and nearly 600 conference papers, are analysed in detail. It becomes evident that the first years of the OBIA/GEOBIA developments were characterised by the dominance of ‘grey’ literature, but that the number of peer-reviewed journal articles has increased sharply over the last four to five years. The pixel paradigm is beginning to show cracks and the OBIA methods are making considerable progress towards a spatially explicit information extraction workflow, such as is required for spatial planning as well as for many monitoring programmes.

© 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

1. Introduction

Environmental monitoring requirements, conservation goals, spatial planning enforcement, or ecosystem-oriented natural resource management, to name just a few drivers, lend considerable urgency to the development of operational solutions that can extract tangible information from remote sensing data. The ‘work horses’ of satellite data generation, such as the Landsat and SPOT satellites or the ASTER and MODIS instruments, have become important in global and regional studies of biodiversity, nature conservation, food security, deforestation impact, desertification monitoring, and other application fields. With the increasing spatial resolution of the ‘1-m generation’ of IKONOS (launched in 1999), QuickBird (2001) or OrbView (2003) sensors, new application fields which had previously been the domain of airborne remote sensing could be tackled by satellite remote sensing. In the late 2007, the first commercial satellite with a resolution of less than half a metre (Worldview-1; 0.44 m panchromatic) became operational, and at present we see security applications, vehicle detection, and many urban applications developing rapidly, in terms of both number and sophistication. By simplification and generalisation we can distinguish two major trends: (a) an increasing amount of data being produced in an ever broader range of spatial, spectral, radiometric and temporal resolutions, including the high spatial resolutions mentioned above, and (b) orchestrated supranational programmes and systems for regular or on-demand surveys of the earth’s surface (e.g. GEOSS, GMES).

This article assesses recent developments in object based image analysis or OBIA – the acronyms OBIA and GEOBIA, which stands for geospatial object based image analysis, are both herein used interchangeably – based on a thorough analysis of over 820 articles dealing with the concept of OBIA. It reflects only very briefly on the tradition of image segmentation, which is much older than the advent of popularised commercial software. The concatenation of two trends has made this new area of research possible: the advent of high resolution imagery, and the availability of powerful, off-the-shelf software that bridges image processing and GIS functionalities in an object based environment (Blaschke et al., 2000). The subject of OBIA is related to concepts of object-oriented software and to object handling in the GIS world; the reader is referred...
to a recent review paper on object-oriented presentation in GIS by Bian (2007).

It is generally agreed (Blaschke et al., 2000; Blaschke and Strobl, 2001; Schiewe, 2002; Hay et al., 2003; Burnett and Blaschke, 2003; Koch et al., 2003; Flanders et al., 2003; Benz et al., 2004; Blaschke et al., 2004; Zhang et al., 2005a; Liu et al., 2006; Navulur, 2007; Lang, 2008; Hay and Castilla, 2008) that OBIA builds on older segmentation, edge-detection, feature extraction and classification concepts that have been used in remote sensing image analysis for decades (Kettig and Landgrebe, 1976; Haralick, 1983; Haralick and Shapiro, 1985; Levine and Nazif, 1985; Strahler et al., 1986; McKeown et al., 1989; Pal and Pal, 1993; Câmara et al., 1996; Hay et al., 1996; Lobo et al., 1996; Ryherd and Woodcock, 1996; Wulder, 1998; Aplin et al., 1999; Baltzavias, 2004). Its emergence has nevertheless provided a new, critical bridge between the spatial concepts applied in multiscale landscape analysis (Wu, 1999; Hay et al., 2001; Wu and David, 2002; Burnett and Blaschke, 2003), Geographic Information Systems (GIS, (Câmara et al., 1996; Yu et al., 2006)), Geographic Information Science (abbreviated to GIScience, see (Goodchild, 1992, 2004)), and the synergy between image-objects and their radiometric characteristics and analyses in Earth Observation data (Benz et al., 2004; Blaschke et al., 2004; Langanke et al., 2007; Laliberte et al., 2007; Navulur, 2007; Möller et al., 2007; Jobin et al., 2008; Stow et al., 2008; Tiede et al., 2008; Trias-Sanz et al., 2008; Aubrecht et al., 2008; van der Werff and van der Meersch, 2008; Weinke et al., 2008).

In recent years, a critical online discussion has arisen within an evolving multidisciplinary community concerning whether or not geographic space should be included in the name of this concept (see Hay and Castilla (2008); Castilla et al. (2008); Lang (2008)). Hay and Castilla (2008) argue that it should be called “Geographic Object Based Image Analysis” (GEOBIA), as only then will it be clear that it represents a sub-discipline of GIScience. Indeed, the term OBIA may be too broad, for it goes without saying for remote sensing scientists, GIS specialists and many ‘environmental’ based disciplines that ‘their’ image data represents portions of the Earth’s surface. However, such an association may not be taken for granted by scientists in disciplines such as Computer Vision, Material Sciences or Biomedical Imaging who also conduct OBIA. Since this debate of naming remains ongoing, the author has chosen to acknowledge both terms equally but to conform with the usage in the title of the definitive book in this field (Blaschke et al., 2008) as well as in two previous books (Blaschke, 2002; Blaschke and Kux, 2005), and for the sake of simplicity use the term OBIA in the remainder of this article.

2. Object based image analysis in remote sensing

2.1. What’s wrong with pixels?

Blaschke and Strobl (2001) have raised the provocative question “What’s wrong with pixels?”, having identified an increasing dissatisfaction with pixel-by-pixel image analysis. Although this critique was not new (Cracknell, 1998; see also Blaschke and Strobl (2001), Burnett and Blaschke (2003) and Blaschke et al. (2004) for a more thorough discussion) they observed something like a hype in applications ‘beyond pixels’. A common denominator of these applications was, and still is, that they are built on image segmentation (see also Burnett and Blaschke (2003), Hay et al. (2003), Benz et al. (2004), Liu et al. (2006), Blaschke et al. (2004), Hay et al. (2005), Blaschke and Lang (2006), Lang and Blaschke (2006), Lang (2008), Hay and Castilla (2008) and Blaschke et al. (2008)). Image segmentation is not at all new (Haralick, 1983; Haralick and Shapiro, 1985; Pal and Pal, 1993; Kartikeyan et al., 1998), but has its roots in industrial image processing and was not used extensively in Geospatial applications throughout the 1980s and 1990s (Blaschke et al., 2004).

Uses for segmentation methods outside remote sensing – including industrial or medical image processing – are legion (Pal and Pal, 1993). Within remote sensing applications, algorithms are numerous and have been rapidly increasing over the past few years (Kartikeyan et al., 1998; Baatz and Schäpe, 2000; Blaschke et al., 2004; Neubert et al., 2008). Image segmentation, from an algorithmic perspective, is generally divided into four categories: (a) point-based, (b) edge-based, (c) region-based and (d) combined (Schiewe, 2002) – for technical details of segmentation techniques, readers can refer to Pal and Pal (1993). No matter which of the methods is applied, segmentation provides the building blocks of object based image analysis (Hay and Castilla, 2008; Lang, 2008), at least for now, since the user may ultimately wish to deal with spatially fuzzy objects (Gorte, 1998) or with fields (Cova and Goodchild, 2002). Segments are regions which are generated by one or more criteria of homogeneity in one or more dimensions (of a feature space) respectively. Thus segments have additional spectral information compared to single pixels (e.g. mean values per band, and also median values, minimum and maximum values, mean ratios, variance etc.), but of even greater advantage than the diversification of spectral value descriptions of objects is the additional spatial information for objects (Blaschke and Strobl, 2001; Darwish et al., 2003; Flanders et al., 2003; Benz et al., 2004; van der Werff and van der Meer, 2008; Hay and Castilla, 2008). It has been frequently claimed that this spatial dimension (distances, neighbourhood, topologies, etc.) is crucial to OBIA methods, and that this is a major reason for the marked increase in the usage of segmentation-based methods in recent times, compared to the usage of image segmentation in remote sensing during the 1980s and 1990s (Hay et al., 2003; Koch et al., 2003; Benz et al., 2004; Blaschke et al., 2004; Liu et al., 2006; Navulur, 2007; Conchedda et al., 2008; Wuest and Zhang, 2009; Gamanya et al., 2009).

Fig. 1 lays out schematically the relationship between the spatial resolution and the object under consideration. Although we have difficulties in defining generically applicable thresholds we can differentiate semantically between these three situations. For simplicity, we can regard the pixel in a similar way to the spatial resolution. Furthermore, when considering the Shannon sampling theorem (sometimes called Nyquist–Shannon sampling theorem), we can conclude that an object should be of the order of one tenth of the dimension of the sampling scheme – the pixel – in order to ensure that it will be completely independent of its random position and its orientation relative to the sampling scheme. The three situations outlined graphically in Fig. 1 require completely different techniques to unravel information from the data sets. It can be assumed that the situations (a) and (b) do not leave much choice when the task is to identify, classify and characterise a given object as illustrated. The situation (c), however, may be considered a ‘high resolution situation’, and only
here can the specific advantages of the OBIA approach be deployed, although regionalisation approaches have also been applied to other situations, for example to Landsat images, and recent studies have also utilised OBIA methods for medium or coarse resolution data (Dorren et al., 2003; Geneletti and Gorte, 2003; Duveiller et al., 2008; Myint et al., 2008; Jobin et al., 2008).

Before OBIA, the main task of image segmentation was to produce a set of non-overlapping segments (polygons), and this step was quite separate from the classification. The problem, though, is scale: scale is a ‘window of perception’ (Marceau, 1999) and we typically end up with several scales in imagery – if the spatial resolution is finer than the size of the objects of interest. A segmentation algorithm is used in the expectation that it will divide the image into (a) relatively homogeneous and (b) semantically significant groups of pixels. Burnett and Blaschke (2003) called these groups ‘objects candidates’ which are to be recognised by further processing steps and to be transferred into meaningful objects. It is well known that semantically significant regions are found in an image at different scales of analysis (Hay et al., 2001, 2003), and OBIA is inextricably linked to multiscale analysis concepts (Burnett and Blaschke, 2003; Benz et al., 2004; Lang, 2008; Hay and Castilla, 2008), even if single levels are targeted for specific applications (Lang and Langanke, 2006; Lang, 2008; Weinke et al., 2008). Burnett and Blaschke (2003) called this OBIA concept “multiscale segmentation/object relationship modelling” (MSS/ORM). Lang and Langanke (2006) developed an iterative One Level Representation (OLR), and Tiede et al. (2008) applied the OLR concept convincingly to airborne LiDAR data for tree crown segmentation (as did many other research groups, e.g. Brennan and Webster (2006) and Bunting and Lucas (2006)). Weinke et al. (2008) empirically applied and evaluated both OBIA concepts, and found pros and cons for each approach. For a high resolution aerial image, for example, at coarse scales we can discriminate fields or forest stands, while at finer scales we can discriminate individual trees or plants: parameters and thresholds in a typical single-scale segmentation algorithm must therefore be tuned to the correct scale for analysis. It is, however, often not possible to determine the correct scale of analysis in advance because different kinds of images require different scales of analysis, and furthermore, in many cases significant objects appear at different scales of analysis of the same image (Arbiol et al., 2006).

It should be clearly stated that much of the work referred to as OBIA originated around the software known as “eCognition” (Baatz and Schäpe, 2000; Flanders et al., 2003; Benz et al., 2004), which was later renamed “Definiens” (Lang and Tiede, 2007). Furthermore, very few of these ‘early’ OBIA developers used the term ‘object based’. Some authors used ‘object oriented’ (Blaschke et al., 2000; Blaschke and Hay, 2001; Benz et al., 2004) and some of these later switched to ‘object-based’ (with or without a hyphen), whilst some authors still use ‘object-oriented’ (e.g. Navulur (2007)). It has so far been assumed that most authors prefer to use the term ‘based’ since ‘oriented’ may be too closely related to the object-oriented programming paradigm (see Hay and Castilla (2008) for discussion). The idea of incorporating contextual information in the classification of remote sensing images can be traced back to the 1970s (Kettig and Landgrebe, 1976), even though the importance of incorporating texture increases with increasing resolution (see Fig. 1 and explanations). One of the aims of grouping pixels into image objects is to overcome the so called ‘salt and pepper effect’ (Blaschke et al., 2000). Many researchers have claimed that OBIA methods are suitable for overcoming this situation, e.g. “Thanks to the recent improvements in image segmentation, object-based approaches can be used to delineate and classify land cover efficiently” (Duveiller et al., 2008, p. 1971). In recent articles it has even been claimed that “Object-oriented processing techniques are becoming more popular compared to traditional pixel-based image analysis” (Gamanya et al., 2005, p. 571).

2.2. OBIA studies

Even a first, brief literature search reveals that publications in the early period of OBIA (2000 to 2003/04) were dominated by conference proceedings and ‘grey’ literature’, but increasing numbers of empirical studies published in peer-reviewed journals have subsequently provided sufficient proof of the improvements that OBIA offers over per-pixel analyses. For instance, Yu et al. (2006) created a comprehensive vegetation inventory for a study area in Northern California and could empirically demonstrate that the OBIA approach overcame the problem of salt-and-pepper effects found in classification results from traditional per pixel approaches. (Xie et al., 2008) used an object based geographic image retrieval approach for detecting invasive, exotic Australian Pine in South Florida, USA. Dorren et al. (2003) as well as Heyman et al. (2003) favoured an OBIA approach to discriminate broad-scale forest cover types, and in a subsequent study Maier et al. (2008) incorporated very detailed information from LiDAR-derived canopy surface models. Chubey et al. (2006) used OBIA to derive forest inventory parameters. Herrera et al. (2004) classified trees outside forests using an OBIA approach in Costa Rica. Radoux and Defourny (2007) used high resolution satellite images and OBIA methods to produce large scale maps and quantitative information about the accuracy and precision of delineated boundaries for forest management. For a highly fragmented forest landscape in Southern Vancouver Island, Canada, Hay et al. (2005) proved how segments corresponded cognitively to individual tree crowns, ranging up to forest stands, using segmentation, object-specific analysis and object-specific up-scaling. Gergel et al. (2007) distinguished forest structural classes in riparian forests in British Columbia for riparian restoration planning. Shiba and Itaya (2006) used high-resolution satellite imagery (IKONOS, Quick Bird) to evaluate forest land use structure and to assess environmental change in Central Japan. Weiers et al. (2004), Bock et al. (2005), Lathrop et al. (2006), Diaz-Varela et al. (2008) and Jobin et al. (2008) all demonstrated the usefulness of OBIA methods for habitat mapping tasks. Wiseman et al. (2009) successfully identified and quantified 93 out of 97 shelterbelts across the Canadian Prairie Provinces using multi-spectral reflectance, shape, texture and other relational properties, in comparison with 1:40,000 scale orthophoto interpretation; spectral reflectance, variance and shape parameters were combined to differentiate between species compositions for six shelterbelts. Bunting and Lucas (2006) delineated tree crowns within mixed-species forests of complex structure in central east Queensland, Australia, based on 1 m airborne CASI hyperspectral data.

Pascual et al. (2008) presented a two-stage approach for characterising the structure of Pinus sylvestris stands in forests of central Spain; building on the delineation of forest stands and a digital canopy height model derived from LiDAR data they investigated forest structure types. Addink et al. (2007) demonstrated, in a very detailed study with 243 field plots, that the accuracy of parameter estimation for vegetation parameters, aboveground biomass and leaf area index (LAI) in Southern France was higher for object-oriented analysis than for per-pixel analysis. Chen et al. (2007) demonstrated the potential of OBIA to map urban land cover for the city of Beijing from ASTER data with a relatively high accuracy. Similarly, Lackner and Conway (2008) used IKONOS images to automatically delineate and classify land-use polygons in Ontario, Canada, within a diverse urban setting; they obtained high overall accuracies for six- and ten-class maps, with 90% and 86% accuracy respectively. Zhang et al. (2005c) used OBIA methods for the automatic extraction of land cover objects in the Three Gorges Reservoir, China. Kong et al. (2006) also employed an OBIA approach to extract urban land-use information from a high-resolution image. In a study of apparently similar design, Mo et al. (2007) carried out land cover classification experiments in the Zhuzhou area,
China, using a QuickBird multi-spectral image. The authors found it consistent with the visual interpretation results and superior to the per-pixel method. In another Chinese urban dynamic monitoring study in Beijing, An et al. (2007) found the overall accuracy and the Kappa Index of Agreement (KIA) to be significantly higher when using OBIA methods compared with traditional approaches. Coincidentally, Im et al. (2008) compared three different change detection techniques, based on object/neighbourhood correlation, image analysis and image segmentation, with two different per-pixel approaches, and found that object based change classifications were superior (KIA up to 90%) compared to the other change detection results (KIA 80 to 85%).

Stow et al. (2008) could differentiate changes in “true shrubs” and “sub-shrubs” within coastal sage scrub vegetation communities in California: they proved that patterns of shrub distribution were more related to anthropogenic disturbance than to a long drought. Mallinis et al. (2008) performed a multi-scale, object-based analysis of a QuickBird satellite image to delineate forest vegetation polygons in a natural forest in Northern Greece. Johansen et al. (2007) mapped vegetation structure in Vancouver Island, Canada, and discriminated structural stages in vegetation for riparian and adjacent forested ecosystems, using various texture parameters for a QuickBird image including co-occurrence contrast, dissimilarity, and homogeneity texture measures: an OBIA-classification resulted in a very detailed map of vegetation structural classes, with an overall accuracy of 79%. Corbani et al. (2008) developed an approach based on remotely sensed radiometric and spatial information for the mapping of hydrological soil surface characteristics classes according to a predefined typology based on infiltration rates.

Krause et al. (2004) integrated remote sensing data, aerial photographs and point data obtained by fieldwork. They assessed temporal–spatial changes on a mangrove peninsula in Northern Brazil and the adjacent rural socioeconomic impact area, as well as of the nature of the mangrove structure. A land-use cover analysis was also undertaken, and the authors were able to differentiate between strong and weak patterns in the mangrove ecosystem, suggesting different management measures and monitoring at hierarchical scales. Yu et al. (2006) carried out a comprehensive vegetation inventory for protected seashore areas in Northern California. For mangroves on the Caribbean coast of Panama, Wang et al. (2004) were able to enhance spectral separability among mangrove species by taking the object as the basic spatial unit, as opposed to the pixel. Möller et al. (2007) assessed segmentation results and inaccuracies in an agricultural area in Saxony-Anhalt, Germany. They developed the methodology for a ‘Comparison Index’, which allowed a comparison of different segmentation results.

Su et al. (2008) used OBIA methods to improve texture analysis based on both segmented image objects and moving windows across the whole image, and co-occurrence matrix (GLCM) textural features (homogeneity, contrast, angular second moment, and entropy) were calculated. Single additional features such as Moran’s I were able to improve the classification accuracy by up to 7%. A comparison of results between spectral and textural/spatial information indicated that textural and spatial information can be used to improve the object-oriented classification of urban areas using high resolution imagery. As one of the earlier attempts to compare per-pixel and object based methods (see also Neubert, 2001; Meinel et al., 2001; Flanders et al., 2003; Koch et al., 2003; Ehlers et al., 2006), Shackelford and Davis (2003) presented a fuzzy logic methodology to improve classification accuracy of high-resolution multispectral satellite imagery for the classification of urban and suburban areas. For urban IKONOS images they achieved Maximum Likelihood Classification accuracies of 79% to 87%, with significant misclassification errors between the spectrally similar ‘Road’ and ‘Building’ urban land cover types. After incorporating texture measures and a length-width contextual measure, the discrimination between spectrally similar classes could be enhanced by between 8% and 11% compared to the Maximum Likelihood approach.

Zhou and Troy (2008) presented an object-oriented approach for analysing and characterising the urban landscape structure at the parcel level, using high-resolution digital aerial imagery and LIDAR data for the Baltimore area. They incorporated a three-level hierarchy in which objects were classified differently at each level. The overall accuracy of the classification was 92.3%, and the overall Kappa statistic was 0.89. Lucier et al. (2006) evaluated precisely an OBIA method based on digital photographs of vegetation, to objectively quantify the percentage ground cover of grasses, forbs, shrubs, litter, and bare ground within 90 plots of 2 by 2 m: the observed differences between true cover and OBIA results ranged from 1% to 4% for each category.

Desclée et al. (2006) proved the effectiveness of OBIA-based change detection capability in detecting forest changes in temperate regions, while Duveiller et al. (2008) investigated land cover change by combining a systematic regional sampling scheme based on high spatial resolution imagery with object based, unsupervised, classification techniques for a multi-date segmentation, to obtain objects with similar land cover change trajectories, which were then classified by unsupervised procedures. This approach was applied to the Congo River basin to accurately estimate deforestation at regional, national and landscape levels. Ivits and Koch (2002) and Ivits et al. (2005) analysed landscape patterns for 96 sampling plots in Switzerland, based on OBIA-derived patch indices for land-use intensities ranging from old-growth forests to intensive agricultural landscapes: landscape patterns could be quantified on the basis of merged Landsat ETM–IRS, QuickBird and aerial photographic data. Yan et al. (2006) compared per-pixel and OBIA classifications for land-cover mapping in a coal fire area in Inner Mongolia, and found the differences in accuracy, expressed in terms of proportions of correctly allocated pixels, to be statistically significant. They concluded that the thematic mapping result using an object-oriented image analysis approach gave a much higher accuracy than that obtained using the per-pixel approach.

Marignani et al. (2008) developed a standardised method to develop restoration practices capable of increasing the efficacy of landscape management. They claimed that object-oriented approaches could assist in the development of methods for selecting areas to be prioritised for restoration purposes, since they act on images using a predefined, and thus repeatable, algorithm. In many landscape ecological applications, in landscape planning and in nature conservation, OBIA methods are used to link the objects obtained to the “patches” in landscape ecology (Burnett and Blaschke, 2003; Devereux et al., 2004; Laliberte et al., 2004; Schiewe and Ehlers, 2005; Lang and Lananke, 2006; Lananke et al., 2007).

CART (classification and regression trees) models are increasingly being used in conjunction with object-oriented methods in urban mapping (Thomas et al., 2003), rangeland mapping (Laliberte et al., 2007) and coastal zone applications (Yu et al., 2006), or for the extraction of forest inventory parameters (Chubey et al., 2006). Mathieu et al. (2007) successfully mapped private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery. Stow et al. (2007) delineated residential land use polygons and identified low and high socio-economic status neighbourhoods within Accra, Ghana, on the basis of QuickBird multispectral satellite data.

Platt and Rapoza (2008) compared results from a Maximum Likelihood classification with results from OBIA for a mixed
urban–suburban-agricultural landscape surrounding Gettysburg, Pennsylvania. They noted that OBIA has at least four components not typically used in per-pixel classification: (1) the segmentation procedure, (2) the nearest neighbour classifier, (3) the integration of expert knowledge, and (4) feature space optimisation. They evaluated each of these components individually and found that the combination of segmentation into image objects, use of the nearest neighbour classifier, and the integration of expert knowledge yielded substantially improved classification accuracy for the scene, compared to a per-pixel method.

OBIA applications focussing on the identification and classification of urban features are too numerous to be listed here. Most notably, Thomas et al. (2003) assessed the accuracy of three different methods for extracting urban land-cover/land-use information from high-resolution imagery for the city of Scottsdale, Arizona, for storm-water runoff estimation. They demonstrated that the increased amount of spatial information in one meter or less resolution imagery strains the resources of image classification using traditional supervised and unsupervised spectral classification algorithms. Similarly, Carleer et al. (2005) compared four segmentation algorithms from the two main groups of segmentation algorithms (boundary-based and region-based), applied on very high spatial resolution images for different landscapes, and differentiated urban areas into residential, urban administrative zones and urban dwelling zones. In recent applications, research has been expanded into the characterisation of urban structures, the incorporation of ancillary geospatial information and socioeconomic data (Lemp and Weidner, 2005; Liu et al., 2005; Nobrega et al., 2008; Kux and Araujo, 2008; Hofmann et al., 2008; Aubrecht et al., 2008; Kressler and Steinnocher, 2008), and into subsequently tackling dynamic aspects of urban change, especially urban sprawl (An et al., 2007; Jacquin et al., 2008; Durieux et al., 2008). Based on Airborne Laser Scanning and optical imagery, Aubrecht et al. (2008) analysed land cover and urban function types on the basis of their relative heights and integrated socioeconomic data. Durieux et al. (2008) successfully applied OBIA methods in urban environments and for mapping urban sprawl. Jacquin et al. (2008) proved OBIA capacities and revealed an improved capacity to delineate urban extent at regional scales and to quantify urban objects at local scales through a comparison with an urban database realised using a computer assisted photo interpretation. Lang et al. (2006) applied OBIA methods to the classification of refugee camps and the quantification of houses and tents while Ebert et al. (2009) applied OBIA methods for the definition and estimation of variables from optical and LiDAR data in combination with elevation information and existing hazard information, aiming to estimate social vulnerability indicators through the use of physical characteristics.

Zhou et al. (2008) showed that OBIA methods to model lawn characteristics, such as parcel lawn area and parcel lawn greenness, combined with household characteristics, could be used to predict household lawn fertilisation practices on private residential lands in the Baltimore area, Maryland. Walker and Briggs (2007) developed an object based classification approach for high resolution, true-colour aerial photography for the Phoenix Metropolitan area, and isolated vegetation patches ranging from shrubs to large trees for further analysis, while Walker and Blaschke (2008) adapted this classification method into transferable rule-sets. Schöpfer and Möller (2006) demonstrated the transferability of OBIA methods for several metropolitan areas. Berberoglu and Akin (2009) used detection techniques including image differing, image rationing, image regression and change vector analysis, to assess their effectiveness for detecting land use/cover change in a Mediterranean environment.

A brief look at damage analysis, disaster management and risk management (excluding the wide range of security or geoin- telligence applications) is also warranted. Myint et al. (2008) identified tornado damaged areas, comparing supervised, unsupervised, and object-oriented classification approaches: accuracy assessment (KIA) revealed that the OBIA approach showed the highest degree of accuracy in tornado damage detection. Reiche et al. (2007) classified oil spills in Western Siberia using OBIA methods. For the group of risk analysis and management applications the reader is referred to Van de Sande et al. (2003) who applied OBIA to land cover mapping for flood risk and flood damage assessment, and to Park and Chi (2008), who investigated potential landslide occurrences in Korea and adapted unsupervised change detection analysis based on multi-temporal object based segmentation of high-resolution remote sensing data, and thresholding, to detect landslide-prone areas. The OBIA method predicted landslide susceptibility on the basis of detected landslide areas and GIS-based spatial databases, and 83% of actual landslide areas were detected. Turker and Sumer (2008) detected damaged buildings from an earthquake in Gölçuk, Turkey, one of the urban areas most strongly affected by the 1999 Izmit earthquake. A watershed segmentation of post-event aerial images utilised the relationship between the buildings and their shadows and labelled 80.6% of buildings correctly as either damaged or undamaged.

Gusella et al. (2005) quantified the number of buildings that collapsed following the Bam earthquake, commencing with the inventory of buildings as objects in QuickBird satellite imagery captured before the event. From 18,872 structures identified for Bam, the results suggested that 34% had collapsed, a total of 6,473, leading to an overall accuracy of 70% for the damage classification. To elucidate the communalities of OBIA methods for earthquake or otherwise demolished houses, and subsequently for all kinds of man-made structures, al Khudairy et al. (2005) analysed structural damage caused by war-like conflicts using pre-conflict IKONOS images of Jenin (2 m resolution), in the Palestinian territories, and Brest (1 m resolution) in FYROM. They examined the feasibility of using mathematical morphological operators to automatically identify zones of likely structural damage in dense urban settings. The overall results showed that object-oriented segmentation and classification systems facilitate the interpretation of change detection results derived from very high-resolution (1 m and 2 m) commercial satellite data. They concluded (al Khudairy et al., 2005, p. 825): “The results show that object-oriented classification techniques enhance quantitative analysis of traditional pixel-based change detection applied to very high-resolution satellite data and facilitate the interpretation of changes in urban features”.

2.3. Remaining problems

The investigations cited above and many other studies not listed here for reasons of space, demonstrate the potential of OBIA but also reveal that other problems more specific to high resolution situations can arise. In high-resolution images, for example, each pixel is not closely related to vegetation physiognomy as a whole, and vegetation always shows heterogeneity as a result of irregular shadow or shade (Ehlers et al., 2003). However, many studies are able to demonstrate that the advantage (one may say the luxury) of being able to aggregate pixels to segments to objects and to address objects characteristics through sub-objects allow one to explicitly treat various kinds of ‘within-patch heterogeneity’ (Blaschke, 1995), which enables applications in studying forest gaps, vegetation patchiness or landscape complexity. It is widely acknowledged that advances in sensor technologies, particularly those relating to sensor spatial resolution, are helping to make remote sensing more appropriate to detailed studies of the earth’s surface. The resulting huge amounts of data pose a challenge, and object based methods are far from the only way to deal with this problem. Developments in image classification
techniques—notably, artificial neural networks (ANNs), fuzzy set methods, genetic algorithms, and support vector machines, just to name a few, may offer the prospect of improved representation of complex environments. This article does not adequately nor comprehensively address those developments but concentrates on regionalisation approaches to fine scaled information, which aim to address real world objects.

Without venturing into any epistemological analysis of the pixel paradigm it can be stated that it has been, and still is, the basis for thousands of successful applications in remote sensing. It does, however, have its limitations in regard to relative scale, context, and fuzzy or smooth transitions. Clearly, it was the launch of the ‘new generation’ of very high spatial resolution satellite sensors and the wide dissemination of a variety of digital data sources that provided the incentive to augment detailed satellite data.

Fig. 2 is just one example of many applications which deals with fuzzy patterns or chess-board patterns, where single pixel information may be misleading when classified individually.

In conclusion, starting from around the year 2000 we can document a sharp increase in the usage of image segmentation techniques and an increasing use of the terms “object based image analysis” and “object oriented image analysis”. This increase in usage has been frequently reported in literature but has not previously been proven quantitatively, and hence the next section will document a comprehensive content analysis for OBIA publications, considering peer-reviewed and non-peer-reviewed publications separately.

3. Content analysis

3.1. Rationale

Early stages of new developments are characterised by a relatively high number of conference articles and ‘grey’ literature, since it is more difficult to publish new methodologies in established journals, while specific journals on, for example, OBIA, do not exist. It can also be assumed that, in almost all fields of science, there are de facto communities of specialists and scientists who care about the issues related to the formalisation, analysis and use of concepts and data. In GIScience, for example, there is the University Consortium for Geographic Information Science (UCGIS), or the Association of Geographic Information Laboratories for Europe (AGILE). In remote sensing too, there is the International Society of Photogrammetry and Remote Sensing (ISPRS) and relevant national organisations such as the American Society of Photogrammetry and Remote Sensing (ASPRS), and the German Society for Photogrammetry and Remote Sensing (DGPF), some of them with a history of up to 100 years. The GIScience community has been developing for nearly two decades (Goodchild, 1992, 2004) and is described as an increasingly specialised field. OBIA is somehow the link between the remote sensing world and GIScience: Hay and Castilla (2008) even call OBIA a sub-discipline of GIScience, linking the pixel world and the vector world. In recent years a significant number of authors has claimed the use of OBIA to be advantageous (Blaschke et al., 2000; Baatz and Schäpe, 2000; Blaschke and Strobl, 2001; Burnett and Blaschke, 2003; Flanders et al., 2003; Benz et al., 2004; Carleer et al., 2005), and the author has found it necessary to complement this belief with a quantitative analysis of publications in this field, and the type of media that they appear in. The rationale for adopting this method was two-fold: the appropriateness of comparing amounts of ‘grey’ literature and journal articles in a still young and developing field, and the absence of a quantitative foundation for the hypothesis that the use of OBIA is an important trend or a new paradigm in remote sensing and GIScience.

3.2. Method

The importance of a major trend – to avoid a discussion on the more complex term “paradigm” and associated discussion (Kuhn, 1962) – is in most scientific fields closely linked to the amount of relevant publishing activity. The ‘productivity’ of researchers is evaluated partially through the quantity of their published works (for instance, the number of papers published), but also on their quality (based, for example, on awards for the best papers, personal invitations to publish, etc.), (Caron et al., 2008), as well as on the way these publications impact on their area of expertise (particularly the frequency with which articles are cited) (Dubois and Reeb, 2000).

It is assumed that, whenever possible, researchers tend to publish in well established journals (Caron et al., 2008). Although the ranking of academic journals is common practice in many fields of research, the activity is not without contention or criticism. Whilst recognising this situation, the author agrees with Harzing and van der Wal (2008) in considering this to be just part of academic life; it is nevertheless important to ensure that such rankings are as comprehensive and objective as possible. The “impact factor” is one of the standardised measures created by the Institute of Scientific Information (ISI), which can be used to measure variations over time in the number of citations received for articles in a journal (Amin and Mabe, 2000). The ISI citation databases are designed to cover the highest impact scientific research journals. Google Scholar also contains citation information, but includes less quality control over the collection of publications from different types of web documents. van Kousha and Thelwall (2008) found that those citations unique to Google Scholar, which were not in the ISI database, were mainly from full-text sources, and that the large disciplinary differences between different types of citing document suggested that a wide range of non-ISI citing sources, especially those from non-journal documents, were accessible through Google Scholar. The authors considered this to be an advantage of Google Scholar, especially for open access scholarly documents providing a broader type of citation impact (van Kousha and Thelwall, 2008). Harzing and van der Wal (2008) investigated 536 journals from the Harzing Journal Quality List that had both an ISI factor and a Google Scholar h-index or g-index for 2003–2006. The correlation was shown to be strong and very significant, even though they measure in different ways, and as a consequence, both ISI Web of Knowledge and Google Scholar were used in the following analysis.

3.3. Non peer-reviewed literature

The main sources for this search were the Internet, some CD-ROMs and books from relevant conferences and workshops, and also edited books. Following a first, rough Internet search carried out with the help of some PhD students in the third quarter of 2008, twelve conferences with at least five relevant papers or extended abstracts were identified (Table 1). From these sources 1320 abstracts were screened to identify papers relevant to OBIA and 349 abstracts were identified as being related to OBIA in a broad sense.

Other conferences and other documents available as CD-ROMs or over the Internet were pre-screened and another 242 not fully peer-reviewed articles were identified as relevant to OBIA. For these sources, error of omission – missing the occasional conference paper – is not critical to obtaining a valid result, since this is not an absolute measurement.
3.4. Peer-reviewed literature

For the second group, comprising peer-reviewed edited book chapters and journal papers, it is important to identify most of the relevant articles and to reduce the error of omission as much as possible. Although such an attempt can never lead to a ‘complete’ result it is believed that the vast majority of relevant articles accessible in February 2009 have been identified. The task was accomplished through a two-fold search using the ISI Web of Knowledge and Google Scholar during the fourth Quarter of 2008. The papers identified were re-visited in February 2009 and analysed for how often they were cited. Only titles, abstracts and keywords were searched but not the full text, the hypothesis being that the object based methodology should be so important in the respective papers that one of the search combinations (“object based”, “object-based”, “object-oriented”, “object-driven”....) should be mentioned in the abstract. Only then could a paper be called an OBIA-relevant paper. This search

Table 1
Conferences identified as relevant, and number of relevant papers (not overall papers).

<table>
<thead>
<tr>
<th>Title of conference/workshop</th>
<th>Relevant papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 2003 workshop on advances in techniques for analysis of remotely Sensed Data, Washington DC</td>
<td>9</td>
</tr>
<tr>
<td>ISPRS 2003 workshop on challenges in geospatial analysis, integration and visualisation, Athens, USA</td>
<td>9</td>
</tr>
<tr>
<td>ISPRS 2004 international workshop on processing and visualisation using high-resolution imagery, Chiang Mai, Thailand</td>
<td>5</td>
</tr>
<tr>
<td>ISPRS 2004 world congress, Istanbul</td>
<td>29</td>
</tr>
<tr>
<td>ISPRS 2005WG VII/1 human settlements and impact analysis, Tempe/Phoenix USA</td>
<td>32</td>
</tr>
<tr>
<td>ASPRS 2006: ASPRS annual conference, Boston, USA</td>
<td>32</td>
</tr>
<tr>
<td>MAPPS/ASPRS 2006: Specialty conference measuring earth II: Latest developments with digital surface modelling and automated feature extraction, San Antonio, USA</td>
<td>24</td>
</tr>
<tr>
<td>OBIA 2006 international conference on object-based image analysis, Salzburg, Austria</td>
<td>84</td>
</tr>
<tr>
<td>ASPRS 2007 annual conference — Identifying geospatial solutions, Tampa, USA</td>
<td>34</td>
</tr>
<tr>
<td>ARCS 2007 28th Asian conference on remote sensing, Kuala Lumpur, Malaysia</td>
<td>17</td>
</tr>
<tr>
<td>ARCS 2008 29th Asian conference on remote sensing, Colombo, Sri Lanka</td>
<td>19</td>
</tr>
<tr>
<td>GEOBIA 2008, 2nd international conference, Calgary, Canada</td>
<td>55</td>
</tr>
</tbody>
</table>
methodology may increasingly lead to errors of omission once the OBIA methodology is mature and no longer needs to be mentioned in the abstracts or key words, but it is believed that a mention in the title, abstract or key words would be expected in the case of an evolving methodology/paradigm. Several varieties of searches were repeated for each of the two search engines employed, and the results filtered to eliminate duplications and non-geospatial applications.

4. Results

4.1. Quantitative results

The content analysis considered 229 articles, of which 145 were from a wide range of journals and the rest were mainly book chapters or publications from renowned organizations such as SPIE or IEEE, which fall in between categories (e.g. “Proceedings of SPIE”, IGARSS...). The majority of the book chapters (43 chapters) were from a book edited by Blaschke et al. (2008) and 145 of the articles were considered to be peer-reviewed journal articles, almost all from ISI referenced journals. The majority of articles were found in the following 14 journals, which together contained 129 articles or about 90% of the journal papers identified. The remaining 14 articles were distributed across a wide range of journals, from forestry applications to wildfire management, wetland, and maritime applications. The 14 most OBIA-relevant journals were:

- Remote Sensing of Environment
- International Journal of Remote Sensing
- ISPRS Journal of Photogrammetry and Remote Sensing
- Photogrammetric Engineering & Remote Sensing
- Photogrammetrie – Fernerkundung – Geoinformation
- Canadian Journal of Remote Sensing
- IEEE Transactions on Geoscience and Remote Sensing
- Geocarto International
- International Journal of Applied Earth Observation and Geoinformation
- Landscape and Urban Planning
- Chinese Geographical Science
- Computers, Environment and Urban Systems
- GIScience & Remote Sensing
- Computers & Geosciences

Most influential papers

Finally, the search results were analysed for the number of citations using ISI Web of Knowledge and Google Scholar. Since these are rapidly changing figures, more than twenty papers that were preliminarily identified on the ISI website during the 4th quarter of 2008 as being most often cited were re-visited at the latest possible date before the submission of this article in April 2009. The main papers considered to be relevant to OBIA are listed in Table 2.

An average ISI factor for OBIA articles was calculated as well as a per year citation rate (ISI per year), for all papers included in ISI. The average citation provided by ISI was 4.9. The average annual citation, excluding the year of publication itself and including the year 2008, was 4.1 per year.

4.2. How influential/important is this compared to other fields in remote sensing?

In order to provide a feeling for whether these figures are high or low compared to other fields in remote sensing or GIScience, a few comparisons were made. In January 2009 a very general search on “remote sensing” or “satellite data” was performed and the resulting 16,600 entries analysed. This search is clearly a compromise and leads to overshoots and undershoots since various papers from robotics, space sciences or computer vision are included and many remote sensing application papers are excluded. However, it gives a good indication of the overall increase in publications (Fig. 3) and was used to assess the ‘typical’ or average impact of remote sensing papers. After excluding all publications prior to 1985 and the few publications from 2009 there remained some 9517 publications. To derive the number of citations the same method was used as for the OBIA papers.

The average citation per article for these publications was 8.1. The maximum number of citations was 664 and 120 papers were cited more than 100 times, of which 30 papers were cited more than 200 times. These top 120 papers accounted for nearly 24 percent of all citations, while the top 500 papers account for nearly 50 percent. Of interest is the very long tail to this distribution of citations: 803 papers had been referenced one time only (2170 papers or 28.8% of the total had not been cited at all). It was not possible to automate a calculation of citations per year as for the OBIA papers. A comparison calculating the citations per year for the top 30 papers and for a random selection of 30 papers from each quartile revealed the following results: 22.3 (top 30, range 10.5 to 44), 3.1 (1st quartile, range 1.4 to 17.4), 1.5 (2nd quartile, range 0.6 to 4.5), 0.6 (3rd quartile, range 0.1 to 1.5) and 0 for the last quartile. Another way to approximate the number of citations per year for this large field of remote sensing would be to calculate the average age of the publications since 1985 (7.6 years) and to divide this figure into the average number of citations (8.1), which yields 1.07 citations per year.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Citations of the most referenced OBIA relevant papers in ISI and Google Scholar. Per year calculation excludes the year of publication to avoid a bias in the publication order within the year of publication, and ends in 2008.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ISI Per year</td>
</tr>
<tr>
<td>OBIA specific</td>
<td></td>
</tr>
<tr>
<td>Benz et al. (2004)</td>
<td>150</td>
</tr>
<tr>
<td>Burnett and Blaschke (2003)</td>
<td>63</td>
</tr>
<tr>
<td>Pesaresi and Benediktsson (2001)</td>
<td>86</td>
</tr>
<tr>
<td>Câmara et al. (1996)</td>
<td>49</td>
</tr>
<tr>
<td>Baatz and Schape (2000)</td>
<td>–</td>
</tr>
<tr>
<td>Blaschke and Strobl (2001)</td>
<td>–</td>
</tr>
<tr>
<td>For comparison</td>
<td></td>
</tr>
<tr>
<td>Haralick and Shapiro (1985)</td>
<td>720</td>
</tr>
<tr>
<td>Pal and Pal (1993)</td>
<td>777</td>
</tr>
</tbody>
</table>

Fig. 3. Number of articles in the ISI Web of Knowledge for a general search on “remote sensing” or “satellite data”.
5. Discussion

5.1. Increase in peer-reviewed publications

As expected and as repeatedly hypothesised (Blaschke et al., 2000; Blaschke and Strobl, 2001; Benz et al., 2004; Hay and Castilla, 2008), the amount of scientific literature relevant to OBIA/GEObIA (even in a wider sense that includes approaches which are ‘object-oriented’, ‘object-driven’, or include, significant aspects of multi-pixel classification approaches) has been increasing rapidly since the turn of the millennium. As very briefly stated previously, there were early attempts at beyond ‘segmentation-only’ approaches which used various kinds of regionalisation approaches, at least in a hybrid way, dating back to Kettig and Landgrebe (1976). Notwithstanding the importance of these achievements, it is again emphasised that only through the more recent convergence of remote sensing and GIScience, with extensions into disciplines such as computer vision and pattern recognition, has it become possible to explore information from geospatial data in a way that mimics the human interpreter. Many studies have compared OBIA methods with human interpretation of high resolution imagery (Shackelford and Davis, 2003; Ivits et al., 2005; al Khudairy et al., 2005; Carleer et al., 2005; Mo et al., 2007; Stow et al., 2007; Johansen et al., 2007; Jacquin et al., 2008; Zhou and Troy, 2008; Platt and Rapoza, 2008) and revealed the progress being made in this respect.

Since this convergence of fields is still emerging, it may still have a long way to go before being recognised as a paradigm. It is obvious that the number of peer-reviewed references has started from a low level. Although published around the year 2000, before the use of the terms ‘object-oriented image analysis’ or ‘object-based image analysis’ (Blaschke et al., 2000; Blaschke and Strobl, 2001; Blaschke and Hay, 2001) there were some influential articles that can be mentioned specifically as having been important for the development of OBIA because of the high number of citations (>80 either in ISI or Google Scholar or over 50 in both), including McKeown et al. (1989), Woodcock and Harward (1992), Ryherd and Woodcock (1996), Lobo et al. (1996), Câmara et al. (1996), or Aplin et al. (1999). However, the number of OBIA-related peer-reviewed journal papers before 2003 is relatively low. Liu et al. (2006) identified an overall number of 105 papers in the English language as of May 2004, including both peer-reviewed and non-peer-reviewed. This article has subsequently identified 820 papers but the search for non-peer-reviewed papers was not comprehensive. The author estimates that by February 2009, 1400 to 1600 scientific articles will exist which are employing OBIA methodologies.

The content analysis revealed a marked increase in journal papers during 2004 and 2005 and an even greater increase since around the year 2007. Most of the peer-reviewed OBIA literature is so young that most researchers in this field are not even aware of its existence: “Object-oriented image classification has tremendous potential to improve classification accuracies of land use and land cover (LULC), yet its benefits have only been minimally tested in peer-reviewed studies” (Platt and Rapoza, 2008, p. 87).

5.2. Identification of trends

The first period of OBIA was characterised by the commercial success of new software and an increase in the number of scientific publications. The majority of these papers were, however, proprietary in nature, and they were neither immediately transparent nor open to scrutiny through the peer-reviewed academic literature. They were characterised by a certain amount of optimism and even enthusiasm; even some of the first journal papers from this period exhibit a surprisingly emotional involvement. Opaque-ness of exposition persisted in some later articles but a tendency towards a certain maturation process can be observed, and many publications have tried to make as clear as possible the message, if not the detail, of the differences in the new methodology. In these respects – the paucity of methods and the ‘grey’ literature of a developing technique – the formative days of OBIA follow what Kuhn (1962) describes as typical pattern for a new paradigm. Wikipedia defines “Grey literature” as: “open source material that usually is available through specialised channels and may not enter normal channels or systems of publication, distribution, bibliographic control, or acquisition by booksellers or subscription agents”.

There are two major trends related to the significant increase in publications described above. Firstly, the advent of commercially available and easily accessible high resolution satellite data correlates strongly with the increase in the number of OBIA related articles published. With an understandable time lag of one or two years from the launch of the IKONOS and QuickBird satellites, dozens of application papers appeared from the years 2001/02 onward. Some years later the very high resolution digital airborne cameras and LiDAR data reinforced this trend through the increasing need to derive tangible, GIS-ready objects from hundreds of millions of pixels of data.

Secondly, a software package called “eCognition” was presented at various conferences in 1999 and 2000 and became available in 2000 as the first commercially available, object based, image analysis software (Flanders et al., 2003; Benz et al., 2004). The eCognition software built on to the approach originally known as Fractal Net Evolution (Baatz and Schäpe, 2000) and developed into completely programmable workflows (Baatz et al., 2008): it is today known as “Definiens” (Lang and Tiede, 2007). A significant number of applications have employed the Definiens software, and although the precise number could not be counted in the content analysis it is estimated that out of more than 800 articles identified about 50%–55% used the Definiens software. The success of Definiens triggered other software developments such as Feature Analyst (Optiz and Blundell, 2008), SAGA (Böhner et al., 2006) and, more recently, ENVI Feature Extraction (Höblinger and Neubert, 2008) or Erdas Imagine 9.3. A second large but very heterogeneous group of segmentation procedures is, and has always been, single algorithms or single pieces of software developed in an academic environment, some of them freely distributed or open source. Wuest and Zhang (2009), for instance, use the Hierarchical Split Merge Refinement (HSMR) segmentation framework introduced by Ojala and Pietikainen (1999), which has also been employed by Hu et al. (2005) in the field of remote sensing. Several applications built on to the work of Tilton at NASA, and his hierarchical split-and-merge algorithm (Tilton, 1998) which was later developed into a functional, non-commercial software (see also (Neu- bert et al., 2008) for an overview). Although we are now looking back on 7 to 9 years of OBIA, in a more restricted sense we can still describe the integration of remote sensing, GIS, and expert system software as a research frontier (Lu and Weng, 2007) (see Fig. 4).

5.3. Hot research fields within OBIA

The amount of available OBIA literature is increasing rapidly, to the extent that we can now see sub-topics emerging such as specific OBIA hierarchy and scale concepts (Hay et al., 2001, 2002; Burnett and Blaschke, 2003; Lang and Blaschke, 2003; Hall et al., 2004; Addink et al., 2007), segmentation for OBIA (Frauman and Wolff, 2005; Zhang et al., 2005b; Radoux and Defourny, 2008; Neubert et al., 2008; Trias-Sanz et al., 2008; Weidner, 2008), OBIA change detection (Civco et al., 2002; Hall and Hay, 2003; Walter, 2004; Blaschke, 2005; Desclée et al., 2006; Niemeyer et al., 2008; Stow et al., 2008; Conchedda et al., 2008; Schöpfer et al.,...
Fig. 4. A schematic development of the amount of OBIAliterature and some associated triggers.

2008; Bontemps et al., 2008; Weinke et al., 2008; Gamanya et al., 2009) and OBIAsuccessfulnessassessment (Liu and Zhou, 2004; Zhang et al., 2005a; Lusier et al., 2006; Möller et al., 2007; Albrecht, 2008; Platt and Rapoza, 2008; Grenier et al., 2008). The frontiers ofresearch are clearly extended and researchers therefore have to increasetheir degree of specialisation. OBIAsolutions havbeendeveloped even more rapidly since 2004/2005 and severalbooks on this topic have been published recently (Navulur, 2007; Blaschke et al., 2008; Nussbaum and Menz, 2008).

One of the most recent trends is for OBIAMethods to becomepart of dedicated workflows and converge with mainstream GISapplications (Baatz et al., 2008). This rapidly increasing body ofscientific literature conveys a sense of optimism that OBIAmethods generate multi-scalegeospatial information, tempered with some disquiet that the increasingly complex classificationrule-sets and workflows raise at least as many researchquestions as they resolve.

There is a realisation that higher resolution and the detectiondetail available using improved optical instruments, Radar, LiDARoreven Sonar (Lucieer, 2008) create problems with the ‘traditional’approach to land use/land cover mapping. OBIA supports theattempts to overcome the land cover centric view, which is limited toapurely descriptive categorisation of the spectral characteristics ofpixels, and paves the way for a combined use of spectral andspatial (contextual) information towards developing indicators of‘land use’.

While until a few years ago users urged the industry towardshigher spatial resolution, we now have evidence of increasingcomplexity and of more users asking for simplification rather thanfor ever increasing spatial resolutions. Fewer and fewer specialistsbelieve that further improvements in the spatial resolution ofsatellite sensors might yield ‘better’ results.

Objects are now not only in the focus of analytical tasks such asimage processing—for a comprehensive discussion we would haveto include the epistemological and ontological aspects of objectsas well as their methods of derivation. If we consider theanalysis of remotely sensed data as a subset of spatial analysis wecan refer to Goodchild and Longley (1999) who defined spatialanalysis as a “… subset of analytic techniques whose results dependon the frame, or will change if the frame changes, or if objects arerepositioned within it.”. Since there is little room for the considera-tion of epistemological and ontological aspects of real world ob-jects the reader is referred to earlier work on the double-facedcharacter of landscape objects, where ‘landscape objects’ were acontainer for all kinds of real-world objects, including man-madefeatures that are sometimes treated separately. For the ontolog-ical discussion, the reader is referred to Gahegan (1999). Burn-nett and Blaschke (2002) emphasised that objects are simply thehumandiscretisation of nearly-decomposable hierarchical structures(Koestler, 1967) and created the term “object/ not-object dichotom-y”.

The nature and pace of technical development in remote sens-ing has been, and remains, very impressive, yet conceptual issuesare of very much more than semantic importance if the scienceof remote sensing is to make significant contributions to environ-mental monitoring and decision making and to a rational planningprocess. In the introduction to their 800+ page book on OBIApub-lished by Springer, Blaschke et al. (2008) state that OBIA is stronglydevoted to exploring and guiding application-driven developmentby explaining this technological and user-driven evolution in re-mote sensing image analysis, as it moves from pixels to objects. Thecontent analysis in this paper reinforces the conclusion that thefirst stage of OBIA development was mainly devoted to thesoftware, algorithms and infrastructure required to generate andexploit objects. Today, the ultimate aim of more and more OBIALiterature and applications is not to focus on building better segmenta-tion methods, but rather to incorporate and develop geographic-based intelligence, i.e., appropriate information within a geographi-cal context, and all that is implied in order to achieve this aim. Lang(2008) calls this “conditioned information”.

The latest phase of OBIAs research (since 2005) is directed moretowards the automation of image processing. As a consequence oftherapidly increasing proliferation of high-resolution imagery andimproved access to this imagery, more and more articles are discuss-ing automatic object delineation. Automated objectrecognition is certainly an end goal, but realistically it is at presentmainly achieved in a stepwise manner, either with stronglyinterlinked procedures building workflows or with clear breaks inthese workflows. In both cases the steps involve addressing variousmultiscale instances of related objects within a single image(e.g. individual tree crowns, tree clusters, stands, and forests). Severalarticles also deal with object and feature recognition, and withfeature extraction which, although intrinsically tied to OBIAare, in the majority of applications, not an end in themselves.
5.4. From segmentation-centred to information-centred approaches

Image segmentation techniques had already been developed in the 1980s, with an emphasis on industrial image processing (Haralick and Shapiro, 1985; Pal and Pal, 1993) and, to a lesser extent, on geospatial applications. Over recent years we have witnessed an increasing number of applications that systematically use remote sensing information as a proxy for phenomena or processes. One path for logic research is to address land use through the incorporation of contextual information within the image. Spatial information in imagery includes aspects such as image texture, contextual information, pixel proximity, and geometric attributes of features (Narumalani et al., 1998; Gitas et al., 2003; Laliberte et al., 2004; Blaschke et al., 2004; Ivits et al., 2005; Chubev et al., 2006; De sclée et al., 2006; Lang and Langanke, 2006; Luscier et al., 2006; Shibata and Itaya, 2006; Chen et al., 2007; Langanke et al., 2007; Laliberte et al., 2007; Navulur, 2007; Radoux and Defourny, 2007; Stow et al., 2007; Durieux et al., 2008; Conchella et al., 2008; Grenier et al., 2008; Lang et al., 2008; Jacquin et al., 2008; Jobin et al., 2008; Blaschke et al., 2008; Tiede et al., 2008; Aubrecht et al., 2008; van der Werff and van der Meer, 2008). It is increasingly acknowledged that spatial information of objects – especially contextual information – can be made explicit when pixels are linked to objects (Burnett and Blaschke, 2003). This step necessarily involves scale, and at least two dimensions of scale: (a) absolute scale when aiming for certain objects in reality such as single trees, single houses, building blocks, forest stands, or water bodies, and (b) relative scale in regard to data resolution. GIS-type measurements of size, shape, compactness, elongation, rectangularity etc. of polygons are generic. Since scale can be regarded as a “window of perception” (Marceau, 1999) or a function (Strahler et al., 1986), the applications typically need a target scale. Most applied papers in literature address one scale only, or to put it differently, many environmental or spatial planning problems are associated with a certain scale. van der Werff and van der Meer (2008), for example, demonstrated the use of complementary shape measures to classify morphologically different water bodies.

Burnett and Blaschke (2003) have developed a methodology to derive objects at several levels simultaneously and to utilise this information in a classification. They called it Multi Scale Segmentation/Object Related Modelling (MSS/ORM). Lang and Langanke (2006) have, however, convincingly shown that for specific cases a One Level Representation (OLR) might be sufficient and more straightforward. In either case the delineation of relatively homogeneous areas is the basic method, and the common denominator of various realisations of OBIA is the objective to derive ‘meaningful objects’. The differences are mainly in the way that objects, at several levels of discretion of reality, are established. Hay and co-workers (Hay et al., 2001, 2002, 2003, 2005; Hall et al., 2004; Castilla and Hay, 2006; Castilla et al., 2008) have stepwise developed an object-specific upsampling methodology. One specific discussion concerning the realisation in practice of this objective is whether or not objects at several levels are geometrically built precisely one upon another, or whether the different segmentation processes run independently leading to outlines that fit exactly (see Castilla et al., 2008)). Since the appropriate scale of observation is a function of the type of environment and the type of information that is being sought (Strahler et al., 1986; Woodcock and Harward, 1992; Marceau, 1999; Hay et al., 2001), the selection of scale is very important and is a hot research topic in OBIA.

From the comprehensive literature review it can be concluded that OBIA/GEObIA represents a significant trend in remote sensing and GIScience. The author leaves open the questions of whether or not OBIA is a paradigm. For a concluding statement we may – while simplifying – summarise that OBIA software was very successful in the market-place and triggered massive investments in industry as well as in academic research and writing. It met the demands of increasing spatial resolution in imagery and almost explosive amounts of geospatial data that required processing within a specific time-frame. It has been put forward briefly – for a deeper elaboration the reader is referred to Burnett and Blaschke (2002), Lang (2005) or Lang (2008) – that an early ‘technopositivistic’ tendency has also generated high levels of interest in ontological, epistemological and methodological questions of scale, multi-scale data handling, and data fusion, to name just a few areas. It has also led to a rediscovery of inimitable original thinking on the construction of space, on spatial cognition and on the (near-)decomposability of systems (Koestler, 1967; Simon, 1973; Wu and Loucks, 1995). We also have to accept that the human mind is not designed to handle large-scale continuous chaos, nor does it function optimally when dealing with large-scale perfect uniformity (Cutter et al., 2002). The large palette of technical solutions paired with a plethora of geospatial information necessitates a plurality of solutions. Today, the bottleneck in large volume ‘high throughput’ geospatial imagery environments – such as in industrial image processing under standardised conditions – is a sound methodology in the world of ‘conditioned information’ (Lang, 2008). Lacking the required space for a thorough discussion of recent and future research questions it is instead recommended that the reader refer to Lang (2008), and critically revisit the ‘old readings’ of Simon and Koestler. Only with sound methodologies, we will be able to build on integrated, real-time, and mobile GPS/GIS/remote sensing technologies – a topic that has been excluded from this paper – to create a highly interactive, geospatial, decision-support environment.

Acknowledgments

This research is supported by FWF - Austrian Science Fund P20777-N15 for a project entitled: ‘Scales and hierarchies in landform classification’.

References

Lang, S., Blaschke, T., 2006. Bridging remote sensing and GIS - what are the main supporting pillars?. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 39 (3/W4–FC1A).

